

Table of Contents

About the book 8 ..

About the author 9 ...

Sponsors 10 ..

Ebook PDF Generation Tool 12 ...

Ebook ePub Generation Tool 13 ...

Book Cover 14 ..

License 15 ..

Introduction to Bash scripting 16 ...

Bash Structure 17 ..

Bash Hello World 18 ..

Bash Variables 20 ..

Bash User Input 24 ..

Bash Comments 26 ..

Bash Arguments 27 ...

Bash Arrays 29 ...

Substring in Bash :: Slicing 31 ..

Bash Conditional Expressions 33 ..

File expressions 34 ...

String expressions 36 ...

Arithmetic operators 38 ..

Exit status operators 40 ...

Bash Conditionals 41 ...

If statement 42 ...

If Else statement 43 ...

Switch case statements 46 ...

Conclusion 48 ...

Bash Loops 49 ...

For loops 50 ..

While loops 52 ..

Until Loops 54 ...

Continue and Break 55 ...

Bash Functions 57 ..

Debugging, testing and shortcuts 59 ...

Creating custom bash commands 62 ..

Example 63 ..

Making the change persistent 65 ...

Listing all of the available aliases 66 ..

Conclusion 67 ...

Write your first Bash script 68 ...

Planning the script 69 ...

Writing the script 70 ...

Adding comments 71 ...

Adding your first variable 72 ..

Adding your first function 73 ..

Adding more functions challenge 75 ..

The sample script 76 ..

Conclusion 78 ...

Creating an interactive menu in Bash 79 ...

Planning the functionality 80 ..

Adding some colors 82 ...

Adding the menu 83 ..

Testing the script 85 ...

Conclusion 88 ...

Executing BASH scripts on Multiple Remote Servers 89 ...

Prerequisites 90 ..

The BASH Script 91 ..

Running the Script on all Servers 93 ..

Conclusion 94 ...

Work with JSON in BASH using jq 95 ..

Planning the script 96 ...

Installing jq 97 ..

Parsing JSON with jq 99 ..

Getting the first element with jq 101 ..

Getting a value only for specific key 102 ...

Using jq in a BASH script 103 ...

Conclusion 106 ...

Working with Cloudflare API with Bash 107 ..

Prerequisites 108 ..

Challenge - Script requirements 109 ..

Example script 110 ...

Conclusion 112 ...

BASH Script parser to Summarize Your NGINX and Apache Access Logs 113

Script requirements 114 ...

Example script 115 ...

Running the script 116 ...

Understanding the output 117 ...

Conclusion 118 ...

Sending emails with Bash and SSMTP 119 ..

Prerequisites 120 ..

Installing SSMTP 121 ..

Configuring SSMTP 122 ..

Sending emails with SSMTP 123 ...

Sending A File with SSMTP (optional) 124 ..

Conclusion 125 ...

Password Generator Bash Script 126 ...

:warning: Security 127 ...

Script summary 128 ...

Prerequisites 129 ..

Generate a random password 130 ...

The script 132 ..

The full script: 133 ..

Conclusion 134 ...

Contributed by 135 ...

Redirection in Bash 136 ..

Difference between Pipes and Redirections 137 ..

Redirection in Bash 138 ..

STDIN (Standard Input) 139 ...

STDOUT (Standard Output) 140 ...

STDERR (Standard Error) 142 ...

Piping 144 ...

HereDocument 146 ..

HereString 148 ...

Summary 149 ...

Automatic Wordpress on LAMP installation with BASH 150

Prerequisites 151 ...

Planning the functionality 152 ..

The script 154 ...

The full script 161 ..

Summary 165 ...

Wrap Up 166 ...

8

About the book

This version was published on Feb 01 2021

This is an open-source introduction to Bash scripting guide that will help you learn the
basics of Bash scripting and start writing awesome Bash scripts that will help you
automate your daily SysOps, DevOps, and Dev tasks. No matter if you are a
DevOps/SysOps engineer, developer, or just a Linux enthusiast, you can use Bash
scripts to combine different Linux commands and automate tedious and repetitive daily
tasks so that you can focus on more productive and fun things.

The guide is suitable for anyone working as a developer, system administrator, or a
DevOps engineer and wants to learn the basics of Bash scripting.

The first 13 chapters would be purely focused on getting some solid Bash scripting
foundations, then the rest of the chapters would give you some real-life examples and
scripts.

9

About the author

My name is Bobby Iliev, and I have been working as a Linux DevOps Engineer since
2014. I am an avid Linux lover and supporter of the open-source movement philosophy.
I am always doing that which I cannot do in order that I may learn how to do it, and I
believe in sharing knowledge.

I think it's essential always to keep professional and surround yourself with good
people, work hard, and be nice to everyone. You have to perform at a consistently
higher level than others. That's the mark of a true professional.

For more information, please visit my blog at https://bobbyiliev.com, follow me on
Twitter @bobbyiliev_ and YouTube.

https://bobbyiliev.com
https://twitter.com/bobbyiliev_
https://www.youtube.com/channel/UCQWmdHTeAO0UvaNqve9udRw

10

Sponsors

This book is made possible thanks to these fantastic companies!

Materialize

The Streaming Database for Real-time Analytics.

Materialize is a reactive database that delivers incremental view updates. Materialize
helps developers easily build with streaming data using standard SQL.

DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity developers love and
businesses trust to run production applications at scale.

It provides highly available, secure, and scalable compute, storage, and networking
solutions that help developers build great software faster.

Founded in 2012 with offices in New York and Cambridge, MA, DigitalOcean offers
transparent and affordable pricing, an elegant user interface, and one of the largest
libraries of open source resources available.

For more information, please visit https://www.digitalocean.com or follow
@digitalocean on Twitter.

If you are new to DigitalOcean, you can get a free $100 credit and spin up your own
servers via this referral link here:

Free $100 Credit For DigitalOcean

DevDojo

The DevDojo is a resource to learn all things web development and web design. Learn
on your lunch break or wake up and enjoy a cup of coffee with us to learn something
new.

Join this developer community, and we can all learn together, build together, and grow
together.

Join DevDojo

https://materialize.com/
https://www.digitalocean.com
https://twitter.com/digitalocean
https://m.do.co/c/2a9bba940f39
https://devdojo.com?ref=bobbyiliev

11

For more information, please visit https://www.devdojo.com or follow @thedevdojo on
Twitter.

https://www.devdojo.com?ref=bobbyiliev
https://twitter.com/thedevdojo

12

Ebook PDF Generation Tool

This ebook was generated by Ibis developed by Mohamed Said.

Ibis is a PHP tool that helps you write eBooks in markdown.

https://github.com/themsaid/ibis/
https://github.com/themsaid

13

Ebook ePub Generation Tool

The ePub version was generated by Pandoc.

https://pandoc.org/

14

Book Cover

The cover for this ebook was created with Canva.com.

If you ever need to create a graphic, poster, invitation, logo, presentation – or anything
that looks good — give Canva a go.

https://www.canva.com/join/determined-cork-learn

15

License

MIT License

Copyright (c) 2020 Bobby Iliev

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

16

Introduction to Bash scripting

Welcome to this Bash basics training guide! In this bash crash course, you will learn
the Bash basics so you could start writing your own Bash scripts and automate your
daily tasks.

Bash is a Unix shell and command language. It is widely available on various operating
systems, and it is also the default command interpreter on most Linux systems.

Bash stands for Bourne-Again SHell. As with other shells, you can use Bash
interactively directly in your terminal, and also, you can use Bash like any other
programming language to write scripts. This book will help you learn the basics of
Bash scripting including Bash Variables, User Input, Comments, Arguments, Arrays,
Conditional Expressions, Conditionals, Loops, Functions, Debugging, and testing.

Bash scripts are great for automating repetitive workloads and can help you save time
considerably. For example, imagine working with a group of five developers on a
project that requires a tedious environment setup. In order for the program to work
correctly, each developer has to manually set up the environment. That's the same and
very long task (setting up the environment) repeated five times at least. This is where
you and Bash scripts come to the rescue! So instead, you create a simple text file
containing all the necessary instructions and share it with your teammates. And now,
all they have to do is execute the Bash script and everything will be created for them.

In order to write Bash scripts, you just need a UNIX terminal and a text editor like
Sublime Text, VS Code, or a terminal-based editor like vim or nano.

17

Bash Structure

Let's start by creating a new file with a .sh extension. As an example, we could create
a file called devdojo.sh.

To create that file, you can use the touch command:

touch devdojo.sh

Or you can use your text editor instead:

nano devdojo.sh

In order to execute/run a bash script file with the bash shell interpreter, the first line of
a script file must indicate the absolute path to the bash executable:

#!/bin/bash

This is also called a Shebang.

All that the shebang does is to instruct the operating system to run the script with the
/bin/bash executable.

https://en.wikipedia.org/wiki/Shebang_(Unix)

18

Bash Hello World

Once we have our devdojo.sh file created and we've specified the bash shebang on
the very first line, we are ready to create our first Hello World bash script.

To do that, open the devdojo.sh file again and add the following after the
#!/bin/bash line:

#!/bin/bash

echo "Hello World!"

Save the file and exit.

After that make the script executable by running:

chmod +x devdojo.sh

After that execute the file:

./devdojo.sh

You will see a "Hello World" message on the screen.

Another way to run the script would be:

bash devdojo.sh

As bash can be used interactively, you could run the following command directly in
your terminal and you would get the same result:

19

echo "Hello DevDojo!"

Putting a script together is useful once you have to combine multiple commands
together.

20

Bash Variables

As in any other programming language, you can use variables in Bash Scripting as
well. However, there are no data types, and a variable in Bash can contain numbers as
well as characters.

To assign a value to a variable, all you need to do is use the = sign:

name="DevDojo"

Notice: as an important note, you can not have spaces before and after the =
sign.

After that, to access the variable, you have to use the $ and reference it as shown
below:

echo $name

Wrapping the variable name between curly brackets is not required, but is considered
a good practice, and I would advise you to use them whenever you can:

echo ${name}

The above code would output: DevDojo as this is the value of our name variable.

Next, let's update our devdojo.sh script and include a variable in it.

Again, you can open the file devdojo.sh with your favorite text editor, I'm using
nano here to open the file:

21

nano devdojo.sh

Adding our name variable here in the file, with a welcome message. Our file now looks
like this:

#!/bin/bash

name="DevDojo"

echo "Hi there $name"

Save it and run the file using the command below:

./devdojo.sh

You would see the following output on your screen:

Hi there DevDojo

Here is a rundown of the script written in the file:

#!/bin/bash - At first, we specified our shebang.
name=DevDojo - Then, we defined a variable called name and assigned a value
to it.
echo "Hi there $name" - Finally, we output the content of the variable on
the screen as a welcome message by using echo

You can also add multiple variables in the file as shown below:

#!/bin/bash

name="DevDojo"
greeting="Hello"

echo "$greeting $name"

22

Save the file and run it again:

./devdojo.sh

You would see the following output on your screen:

Hello DevDojo

Note that you don't necessarily need to add semicolon ; at the end of each line. It
works both ways, a bit like other programming language such as JavaScript!

You can also add variables in the Command Line outside the Bash script and they can
be read as parameters:

./devdojo.sh Bobby buddy!

This script takes in two parameters Bobbyand buddy! seperated by space. In the
devdojo.sh file we have the following:

#!/bin/bash

echo "Hello there" $1

$1 is the first input (Bobby) in the Command Line. Similarly, there could be more
inputs and they are all referenced to by the $ sign and their respective order of input.
This means that buddy! is referenced to using $2. Another useful method for reading
variables is the $@ which reads all inputs.

So now let's change the devdojo.sh file to better understand:

23

#!/bin/bash

echo "Hello there" $1

$1 : first parameter

echo "Hello there" $2

$2 : second parameter

echo "Hello there" $@

$@ : all

The ouput for:

./devdojo.sh Bobby buddy!

Would be the following:

Hello there Bobby
Hello there buddy!
Hello there Bobby buddy!

24

Bash User Input

With the previous script, we defined a variable, and we output the value of the variable
on the screen with the echo $name.

Now let's go ahead and ask the user for input instead. To do that again, open the file
with your favorite text editor and update the script as follows:

#!/bin/bash

echo "What is your name?"
read name

echo "Hi there $name"
echo "Welcome to DevDojo!"

The above will prompt the user for input and then store that input as a string/text in a
variable.

We can then use the variable and print a message back to them.

The output of the above script would be:

First run the script:

./devdojo.sh

Then, you would be prompted to enter your name:

What is your name?
Bobby

Once you've typed your name, just hit enter, and you will get the following
output:

25

Hi there Bobby
Welcome to DevDojo!

To reduce the code, we could change the first echo statement with the read -p, the
read command used with -p flag will print a message before prompting the user for
their input:

#!/bin/bash

read -p "What is your name? " name

echo "Hi there $name"
echo "Welcome to DevDojo!"

Make sure to test this out yourself as well!

26

Bash Comments

As with any other programming language, you can add comments to your script.
Comments are used to leave yourself notes through your code.

To do that in Bash, you need to add the # symbol at the beginning of the line.
Comments will never be rendered on the screen.

Here is an example of a comment:

This is a comment and will not be rendered on the screen

Let's go ahead and add some comments to our script:

#!/bin/bash

Ask the user for their name

read -p "What is your name? " name

Greet the user
echo "Hi there $name"
echo "Welcome to DevDojo!"

Comments are a great way to describe some of the more complex functionality directly
in your scripts so that other people could find their way around your code with ease.

27

Bash Arguments

You can pass arguments to your shell script when you execute it. To pass an argument,
you just need to write it right after the name of your script. For example:

./devdojo.com your_argument

In the script, we can then use $1 in order to reference the first argument that we
specified.

If we pass a second argument, it would be available as $2 and so on.

Let's create a short script called arguments.sh as an example:

#!/bin/bash

echo "Argument one is $1"
echo "Argument two is $2"
echo "Argument three is $3"

Save the file and make it executable:

chmod +x arguments.sh

Then run the file and pass 3 arguments:

./arguments.sh dog cat bird

The output that you would get would be:

28

Argument one is dog
Argument two is cat
Argument three is bird

To reference all arguments, you can use $@:

#!/bin/bash

echo "All arguments: $@"

If you run the script again:

./arguments.sh dog cat bird

You will get the following output:

All arguments: dog cat bird

Another thing that you need to keep in mind is that $0 is used to reference the script
itself.

This is an excellent way to create self destruct the file if you need to or just get the
name of the script.

For example, let's create a script that prints out the name of the file and deletes the file
after that:

#!/bin/bash

echo "The name of the file is: $0 and it is going to be self-
deleted."

rm -f $0

You need to be careful with the self deletion and ensure that you have your script
backed up before you self-delete it.

29

Bash Arrays

If you have ever done any programming, you are probably already familiar with arrays.

But just in case you are not a developer, the main thing that you need to know is that
unlike variables, arrays can hold several values under one name.

You can initialize an array by assigning values devided by space and enclosed in ().
Example:

my_array=("value 1" "value 2" "value 3" "value 4")

To access the elements in the array, you need to reference them by their numeric
index.

Notice: keep in mind that you need to use curly brackets.

Access a single element, this would output: value 2

echo ${my_array[1]}

This would return the last element: value 4

echo ${my_array[-1]}

As with command line arguments using @ will return all arguments in the array,
as follows: value 1 value 2 value 3 value 4

echo ${my_array[@]}

30

Prepending the array with a hash sign (#) would output the total number of
elements in the array, in our case it is 4:

echo ${#my_array[@]}

Make sure to test this and practice it at your end with different values.

31

Substring in Bash :: Slicing

Let's review the following example of slicing in a string in Bash:

#!/bin/bash

letters=("A""B""C""D""E")
echo ${letters[@]}

This command will print all the elements of an array.

Output:

$ ABCDE

Let's see a few more examples:

Example 1

#!/bin/bash

letters=("A""B""C""D""E")
b=${letters:0:2}
echo "${b}"

This command will print array from starting index 0 to 2 where 2 is exclusive.

$ AB

Example 2

32

#!/bin/bash

letters=("A""B""C""D""E")
b=${letters::5}
echo "${b}"

This command will print from base index 0 to 5, where 5 is exclusive and starting index
is default set to 0 .

$ ABCDE

Example 3

#!/bin/bash

letters=("A""B""C""D""E")
b=${letters:3}
echo "${b}"

This command will print from starting index 3 to end of array inclusive .

$ DE

33

Bash Conditional Expressions

In computer science, conditional statements, conditional expressions, and conditional
constructs are features of a programming language, which perform different
computations or actions depending on whether a programmer-specified boolean
condition evaluates to true or false.

In Bash, conditional expressions are used by the [[compound command and the
[built-in commands to test file attributes and perform string and arithmetic
comparisons.

Here is a list of the most popular Bash conditional expressions. You do not have to
memorize them by heart. You can simply refer back to this list whenever you need it!

34

File expressions

True if file exists.

[[-a ${file}]]

True if file exists and is a block special file.

[[-b ${file}]]

True if file exists and is a character special file.

[[-c ${file}]]

True if file exists and is a directory.

[[-d ${file}]]

True if file exists.

[[-e ${file}]]

True if file exists and is a regular file.

[[-f ${file}]]

True if file exists and is a symbolic link.

[[-h ${file}]]

35

True if file exists and is readable.

[[-r ${file}]]

True if file exists and has a size greater than zero.

[[-s ${file}]]

True if file exists and is writable.

[[-w ${file}]]

True if file exists and is executable.

[[-x ${file}]]

True if file exists and is a symbolic link.

[[-L ${file}]]

36

String expressions

True if the shell variable varname is set (has been assigned a value).

[[-v ${varname}]]

True if the length of the string is zero.

[[-z ${string}]]

True if the length of the string is non-zero.

[[-n ${string}]]

True if the strings are equal. = should be used with the test command for POSIX
conformance. When used with the [[command, this performs pattern matching
as described above (Compound Commands).

[[${string1} == ${string2}]]

True if the strings are not equal.

[[${string1} != ${string2}]]

True if string1 sorts before string2 lexicographically.

[[${string1} < ${string2}]]

True if string1 sorts after string2 lexicographically.

37

[[${string1} > ${string2}]]

38

Arithmetic operators

Returns true if the numbers are equal

[[${arg1} -eq ${arg2}]]

Returns true if the numbers are not equal

[[${arg1} -ne ${arg2}]]

Returns true if arg1 is less than arg2

[[${arg1} -lt ${arg2}]]

Returns true if arg1 is less than or equal arg2

[[${arg1} -le ${arg2}]]

Returns true if arg1 is greater than arg2

[[${arg1} -gt ${arg2}]]

Returns true if arg1 is greater than or equal arg2

[[${arg1} -ge ${arg2}]]

As a side note, arg1 and arg2 may be positive or negative integers.

As with other programming languages you can use AND & OR conditions:

39

[[test_case_1]] && [[test_case_2]] # And
[[test_case_1]] || [[test_case_2]] # Or

40

Exit status operators

returns true if the the command was successful without any errors

[[$? -eq 0]]

returns true if the the command was not successful or had errors

[[$? -gt 0]]

41

Bash Conditionals

In the last section, we covered some of the most popular conditional expressions. We
can now use them with standard conditional statements like if, if-else and
switch case statements.

42

If statement

The format of an if statement in Bash is as follows:

if [[some_test]]
then
 <commands>
fi

Here is a quick example which would ask you to enter your name in case that you've
left it empty:

#!/bin/bash

Bash if statement example

read -p "What is your name? " name

if [[-z ${name}]]
then
 echo "Please enter your name!"
fi

43

If Else statement

With an if-else statement, you can specify an action in case that the condition in
the if statement does not match. We can combine this with the conditional
expressions from the previous section as follows:

#!/bin/bash

Bash if statement example

read -p "What is your name? " name

if [[-z ${name}]]
then
 echo "Please enter your name!"
else
 echo "Hi there ${name}"
fi

You can use the above if statement with all of the conditional expressions from the
previous chapters:

#!/bin/bash

admin="devdojo"

read -p "Enter your username? " username

Check if the username provided is the admin

if [["${username}" == "${admin}"]] ; then
 echo "You are the admin user!"
else
 echo "You are NOT the admin user!"
fi

Here is another example of an if statement which would check your current User
ID and would not allow you to run the script as the root user:

44

#!/bin/bash

if (($EUID == 0)); then
 echo "Please do not run as root"
 exit
fi

If you put this on top of your script it would exit in case that the EUID is 0 and would
not execute the rest of the script. This was discussed on the DigitalOcean community
forum.

You can also test multiple conditions with an if statement. In this example we want to
make sure that the user is neither the admin user or the root user to ensure the script
is incapable of causing too much damage. We'll use the or operator in this example,
noted by ||. This means that either of the conditions needs to be true. If we used the
and operator of && then both conditions would need to be true.

#!/bin/bash

admin="devdojo"

read -p "Enter your username? " username

Check if the username provided is the admin

if [["${username}" != "${admin}"]] || [[$EUID != 0]] ;
then
 echo "You are not the admin or root user, but please be
safe!"
else
 echo "You are the admin user! This could be very
destructive!"
fi

If you have multiple conditions and scenerios, then can use elif statement with if
and else statements.

https://www.digitalocean.com/community/questions/how-to-check-if-running-as-root-in-a-bash-script
https://www.digitalocean.com/community/questions/how-to-check-if-running-as-root-in-a-bash-script

45

#!/bin/bash

read -p "Enter a number: " num

if [[$num -gt 0]] ; then
 echo "The number is positive"
elif [[$num -lt 0]] ; then
 echo "The number is negative"
else
 echo "The number is 0"
fi

46

Switch case statements

As in other programming languages, you can use a case statement to simplify complex
conditionals when there are multiple different choices. So rather than using a few if,
and if-else statements, you could use a single case statement.

The Bash case statement syntax looks like this:

case $some_variable in

 pattern_1)
 commands
 ;;

 pattern_2| pattern_3)
 commands
 ;;

 *)
 default commands
 ;;
esac

A quick rundown of the structure:

All case statements start with the case keyword.
On the same line as the case keyword, you need to specify a variable or an
expression followed by the in keyword.
After that, you have your case patterns, where you need to use) to identify the
end of the pattern.
You can specify multiple patterns divided by a pipe: |.
After the pattern, you specify the commands that you would like to be executed
in case that the pattern matches the variable or the expression that you've
specified.
All clauses have to be terminated by adding ;; at the end.
You can have a default statement by adding a * as the pattern.
To close the case statement, use the esac (case typed backwards) keyword.

Here is an example of a Bash case statement:

47

#!/bin/bash

read -p "Enter the name of your car brand: " car

case $car in

 Tesla)
 echo -n "${car}'s car factory is in the USA."
 ;;

 BMW | Mercedes | Audi | Porsche)
 echo -n "${car}'s car factory is in Germany."
 ;;

 Toyota | Mazda | Mitsubishi | Subaru)
 echo -n "${car}'s car factory is in Japan."
 ;;

 *)
 echo -n "${car} is an unknown car brand"
 ;;

esac

With this script, we are asking the user to input a name of a car brand like Telsa,
BMW, Mercedes and etc.

Then with a case statement, we check the brand name and if it matches any of our
patterns, and if so, we print out the factory's location.

If the brand name does not match any of our case statements, we print out a default
message: an unknown car brand.

48

Conclusion

I would advise you to try and modify the script and play with it a bit so that you could
practice what you've just learned in the last two chapters!

For more examples of Bash case statements, make sure to check chapter 16, where
we would create an interactive menu in Bash using a cases statement to process the
user input.

49

Bash Loops

As with any other language, loops are very convenient. With Bash you can use for
loops, while loops, and until loops.

50

For loops

Here is the structure of a for loop:

for var in ${list}
do
 your_commands
done

Example:

#!/bin/bash

users="devdojo bobby tony"

for user in ${users}
do
 echo "${user}"
done

A quick rundown of the example:

First, we specify a list of users and store the value in a variable called $users.
After that, we start our for loop with the for keyword.
Then we define a new variable which would represent each item from the list
that we give. In our case, we define a variable called user, which would
represent each user from the $users variable.
Then we specify the in keyword followed by our list that we will loop through.
On the next line, we use the do keyword, which indicates what we will do for
each iteration of the loop.
Then we specify the commands that we want to run.
Finally, we close the loop with the done keyword.

You can also use for to process a series of numbers. For example here is one way to
loop through from 1 to 10:

51

#!/bin/bash

for num in {1..10}
do
 echo ${num}
done

52

While loops

The structure of a while loop is quite similar to the for loop:

while [your_condition]
do
 your_commands
done

Here is an example of a while loop:

#!/bin/bash

counter=1
while [[$counter -le 10]]
do
 echo $counter
 ((counter++))
done

First, we specified a counter variable and set it to 1, then inside the loop, we added
counter by using this statement here: ((counter++)). That way, we make sure that
the loop will run 10 times only and would not run forever. The loop will complete as
soon as the counter becomes 10, as this is what we've set as the condition: while [[
$counter -le 10]].

Let's create a script that asks the user for their name and not allow an empty input:

53

#!/bin/bash

read -p "What is your name? " name

while [[-z ${name}]]
do
 echo "Your name can not be blank. Please enter a valid
name!"
 read -p "Enter your name again? " name
done

echo "Hi there ${name}"

Now, if you run the above and just press enter without providing input, the loop would
run again and ask you for your name again and again until you actually provide some
input.

54

Until Loops

The difference between until and while loops is that the until loop will run the
commands within the loop until the condition becomes true.

Structure:

until [[your_condition]]
do
 your_commands
done

Example:

#!/bin/bash

count=1
until [[$count -gt 10]]
do
 echo $count
 ((count++))
done

55

Continue and Break

As with other languages, you can use continue and break with your bash scripts as
well:

continue tells your bash script to stop the current iteration of the loop and
start the next iteration.

The syntax of the continue statement is as follows:

continue [n]

The [n] argument is optional and can be greater than or equal to 1. When [n] is given,
the n-th enclosing loop is resumed. continue 1 is equivalent to continue.

#!/bin/bash

for i in 1 2 3 4 5
do
 if [[$i –eq 2]]
 then
 echo "skipping number 2"
 continue
 fi
 echo "i is equal to $i"
done

We can also use continue command in similar way to break command for controlling
multiple loops.

break tells your bash script to end the loop straight away.

The syntax of the break statement takes the following form:

break [n]

[n] is an optional argument and must be greater than or equal to 1. When [n] is
provided, the n-th enclosing loop is exited. break 1 is equivalent to break.

56

Example:

#!/bin/bash

num=1
while [[$num –lt 10]]
do
 if [[$num –eq 5]]
 then
 break
 fi
 ((num++))
done
echo "Loop completed"

We can also use break command with multiple loops. If we want to exit out of current
working loop whether inner or outer loop, we simply use break but if we are in inner
loop & want to exit out of outer loop, we use break 2.

Example:

#!/bin/bash

for ((a = 1; a < 10; a++))
do
 echo "outer loop: $a"
 for ((b = 1; b < 100; b++))
 do
 if [[$b –gt 5]]
 then
 break 2
 fi
 echo "Inner loop: $b "
 done
done

The bash script will begin with a=1 & will move to inner loop and when it reaches b=5,
it will break the outer loop. We can use break only instead of break 2, to break inner
loop & see how it affects the output.

57

Bash Functions

Functions are a great way to reuse code. The structure of a function in bash is quite
similar to most languages:

function function_name() {
 your_commands
}

You can also omit the function keyword at the beginning, which would also work:

function_name() {
 your_commands
}

I prefer putting it there for better readability. But it is a matter of personal preference.

Example of a "Hello World!" function:

#!/bin/bash

function hello() {
 echo "Hello World Function!"
}

hello

Notice: One thing to keep in mind is that you should not add the parenthesis
when you call the function.

Passing arguments to a function work in the same way as passing arguments to a
script:

58

#!/bin/bash

function hello() {
 echo "Hello $1!"
}

hello DevDojo

Functions should have comments mentioning description, global variables, arguments,
outputs, and returned values, if applicable

#######################################
Description: Hello function
Globals:
None
Arguments:
Single input argument
Outputs:
Value of input argument
Returns:
0 if successful, non-zero on error.
#######################################
function hello() {
 echo "Hello $1!"
}

In the next few chapters we will be using functions a lot!

59

Debugging, testing and
shortcuts

In order to debug your bash scripts, you can use -x when executing your scripts:

bash -x ./your_script.sh

Or you can add set -x before the specific line that you want to debug, set -x
enables a mode of the shell where all executed commands are printed to the terminal.

Another way to test your scripts is to use this fantastic tool here:

https://www.shellcheck.net/

Just copy and paste your code into the textbox, and the tool will give you some
suggestions on how you can improve your script.

You can also run the tool directly in your terminal:

https://github.com/koalaman/shellcheck

If you like the tool, make sure to star it on GitHub and contribute!

As a SysAdmin/DevOps, I spend a lot of my day in the terminal. Here are my favorite
shortcuts that help me do tasks quicker while writing Bash scripts or just while
working in the terminal.

The below two are particularly useful if you have a very long command.

Delete everything from the cursor to the end of the line:

Ctrl + k

Delete everything from the cursor to the start of the line:

https://www.shellcheck.net/
https://github.com/koalaman/shellcheck

60

Ctrl + u

Delete one word backward from cursor:

Ctrl + w

Search your history backward. This is probably the one that I use the most. It is
really handy and speeds up my work-flow a lot:

Ctrl + r

Clear the screen, I use this instead of typing the clear command:

Ctrl + l

Stops the output to the screen:

Ctrl + s

Enable the output to the screen in case that previously stopped by Ctrl + s:

Ctrl + q

Terminate the current command

Ctrl + c

Throw the current command to background:

61

Ctrl + z

I use those regularly every day, and it saves me a lot of time.

If you think that I've missed any feel free to join the discussion on the DigitalOcean
community forum!

https://www.digitalocean.com/community/questions/what-are-your-favorite-bash-shortcuts
https://www.digitalocean.com/community/questions/what-are-your-favorite-bash-shortcuts

62

Creating custom bash
commands

As a developer or system administrator, you might have to spend a lot of time in your
terminal. I always try to look for ways to optimize any repetitive tasks.

One way to do that is to either write short bash scripts or create custom commands
also known as aliases. For example, rather than typing a really long command every
time you could just create a short cut for it.

63

Example

Let's start with the following scenario, as a system admin, you might have to check the
connections to your web server quite often, so I will use the netstat command as an
example.

What I would usually do when I access a server that is having issues with the
connections to port 80 or 443 is to check if there are any services listening on those
ports and the number of connections to the ports.

The following netstat command would show us how many TCP connections on port
80 and 443 we currently have:

netstat -plant | grep '80\|443' | grep -v LISTEN | wc -l

This is quite a lengthy command so typing it every time might be time-consuming in
the long run especially when you want to get that information quickly.

To avoid that, we can create an alias, so rather than typing the whole command, we
could just type a short command instead. For example, lets say that we wanted to be
able to type conn (short for connections) and get the same information. All we need to
do in this case is to run the following command:

alias conn="netstat -plant | grep '80\|443' | grep -v LISTEN |
wc -l"

That way we are creating an alias called conn which would essentially be a 'short cut'
for our long netstat command. Now if you run just conn:

conn

You would get the same output as the long netstat command. You can get even more
creative and add some info messages like this one here:

64

alias conn="echo 'Total connections on port 80 and 443:' ;
netstat -plant | grep '80\|443' | grep -v LISTEN | wc -l"

Now if you run conn you would get the following output:

Total connections on port 80 and 443:
12

Now if you log out and log back in, your alias would be lost. In the next step you will
see how to make this persistent.

65

Making the change persistent

In order to make the change persistent, we need to add the alias command in our
shell profile file.

By default on Ubuntu this would be the ~/.bashrc file, for other operating systems
this might be the ~/.bash_profle. With your favorite text editor open the file:

nano ~/.bashrc

Go to the bottom and add the following:

alias conn="echo 'Total connections on port 80 and 443:' ;
netstat -plant | grep '80\|443' | grep -v LISTEN | wc -l"

Save and then exit.

That way now even if you log out and log back in again your change would be persisted
and you would be able to run your custom bash command.

66

Listing all of the available aliases

To list all of the available aliases for your current shell, you have to just run the
following command:

alias

This would be handy in case that you are seeing some weird behavior with some
commands.

67

Conclusion

This is one way of creating custom bash commands or bash aliases.

Of course, you could actually write a bash script and add the script inside your
/usr/bin folder, but this would not work if you don't have root or sudo access,
whereas with aliases you can do it without the need of root access.

Notice: This was initially posted on DevDojo.com

https://devdojo.com/bobbyiliev/how-to-create-custom-bash-commands

68

Write your first Bash script

Let's try to put together what we've learned so far and create our first Bash script!

69

Planning the script

As an example, we will write a script that would gather some useful information about
our server like:

Current Disk usage
Current CPU usage
Current RAM usage
Check the exact Kernel version

Feel free to adjust the script by adding or removing functionality so that it matches
your needs.

70

Writing the script

The first thing that you need to do is to create a new file with a .sh extension. I will
create a file called status.sh as the script that we will create would give us the
status of our server.

Once you've created the file, open it with your favorite text editor.

As we've learned in chapter 1, on the very first line of our Bash script we need to
specify the so-called Shebang:

#!/bin/bash

All that the shebang does is to instruct the operating system to run the script with the
/bin/bash executable.

https://en.wikipedia.org/wiki/Shebang_(Unix)

71

Adding comments

Next, as discussed in chapter 6, let's start by adding some comments so that people
could easily figure out what the script is used for. To do that right after the shebang
you can just add the following:

#!/bin/bash

Script that returns the current server status

72

Adding your first variable

Then let's go ahead and apply what we've learned in chapter 4 and add some variables
which we might want to use throughout the script.

To assign a value to a variable in bash, you just have to use the = sign. For example,
let's store the hostname of our server in a variable so that we could use it later:

server_name=$(hostname)

By using $() we tell bash to actually interpret the command and then assign the value
to our variable.

Now if we were to echo out the variable we would see the current hostname:

echo $server_name

73

Adding your first function

As you already know after reading chapter 12, in order to create a function in bash you
need to use the following structure:

function function_name() {
 your_commands
}

Let's create a function that returns the current memory usage on our server:

function memory_check() {
 echo ""
 echo "The current memory usage on ${server_name} is: "
 free -h
 echo ""
}

Quick run down of the function:

function memory_check() { - this is how we define the function
echo "" - here we just print a new line
echo "The current memory usage on ${server_name} is: " -
here we print a small message and the $server_name variable
} - finally this is how we close the function

Then once the function has been defined, in order to call it, just use the name of the
function:

74

Define the function
function memory_check() {
 echo ""
 echo "The current memory usage on ${server_name} is: "
 free -h
 echo ""
}

Call the function
memory_check

75

Adding more functions challenge

Before checking out the solution, I would challenge you to use the function from above
and write a few functions by yourself.

The functions should do the following:

Current Disk usage
Current CPU usage
Current RAM usage
Check the exact Kernel version

Feel free to use google if you are not sure what commands you need to use in order to
get that information.

Once you are ready, feel free to scroll down and check how we've done it and compare
the results!

Note that there are multiple correct ways of doing it!

76

The sample script

Here's what the end result would look like:

#!/bin/bash

##
BASH script that checks:
- Memory usage
- CPU load
- Number of TCP connections
- Kernel version
##

server_name=$(hostname)

function memory_check() {
 echo ""
 echo "Memory usage on ${server_name} is: "
 free -h
 echo ""
}

function cpu_check() {
 echo ""
 echo "CPU load on ${server_name} is: "
 echo ""
 uptime
 echo ""
}

function tcp_check() {
 echo ""
 echo "TCP connections on ${server_name}: "
 echo ""
 cat /proc/net/tcp | wc -l
 echo ""
}

function kernel_check() {
 echo ""
 echo "Kernel version on ${server_name} is: "
 echo ""

77

 uname -r
 echo ""
}

function all_checks() {
 memory_check
 cpu_check
 tcp_check
 kernel_check
}

all_checks

78

Conclusion

Bash scripting is awesome! No matter if you are a DevOps/SysOps engineer, developer,
or just a Linux enthusiast, you can use Bash scripts to combine different Linux
commands and automate boring and repetitive daily tasks, so that you can focus on
more productive and fun things!

Notice: This was initially posted on DevDojo.com

https://devdojo.com/bobbyiliev/introduction-to-bash-scripting

79

Creating an interactive menu
in Bash

In this tutorial, I will show you how to create a multiple-choice menu in Bash so that
your users could choose between what action should be executed!

We would reuse some of the code from the previous chapter, so if you have not read it
yet make sure to do so.

80

Planning the functionality

Let's start again by going over the main functionality of the script:

Checks the current Disk usage
Checks the current CPU usage
Checks the current RAM usage
Checks the check the exact Kernel version

In case that you don't have it on hand, here is the script itself:

#!/bin/bash

##
BASH menu script that checks:
- Memory usage
- CPU load
- Number of TCP connections
- Kernel version
##

server_name=$(hostname)

function memory_check() {
 echo ""
 echo "Memory usage on ${server_name} is: "
 free -h
 echo ""
}

function cpu_check() {
 echo ""
 echo "CPU load on ${server_name} is: "
 echo ""
 uptime
 echo ""
}

function tcp_check() {
 echo ""
 echo "TCP connections on ${server_name}: "
 echo ""
 cat /proc/net/tcp | wc -l

81

 echo ""
}

function kernel_check() {
 echo ""
 echo "Kernel version on ${server_name} is: "
 echo ""
 uname -r
 echo ""
}

function all_checks() {
 memory_check
 cpu_check
 tcp_check
 kernel_check
}

We will then build a menu that allows the user to choose which function to be
executed.

Of course, you can adjust the function or add new ones depending on your needs.

82

Adding some colors

In order to make the menu a bit more 'readable' and easy to grasp at first glance, we
will add some color functions.

At the beginning of your script add the following color functions:

##
Color Variables
##
green='\e[32m'
blue='\e[34m'
clear='\e[0m'

##
Color Functions
##

ColorGreen(){
 echo -ne $green$1$clear
}
ColorBlue(){
 echo -ne $blue$1$clear
}

You can use the color functions as follows:

echo -ne $(ColorBlue 'Some text here')

The above would output the Some text here string and it would be blue!

83

Adding the menu

Finally, to add our menu, we will create a separate function with a case switch for our
menu options:

menu(){
echo -ne "
My First Menu
$(ColorGreen '1)') Memory usage
$(ColorGreen '2)') CPU load
$(ColorGreen '3)') Number of TCP connections
$(ColorGreen '4)') Kernel version
$(ColorGreen '5)') Check All
$(ColorGreen '0)') Exit
$(ColorBlue 'Choose an option:') "
 read a
 case $a in
 1) memory_check ; menu ;;
 2) cpu_check ; menu ;;
 3) tcp_check ; menu ;;
 4) kernel_check ; menu ;;
 5) all_checks ; menu ;;
 0) exit 0 ;;
 *) echo -e $red"Wrong option."$clear;
WrongCommand;;
 esac
}

A quick rundown of the code

First we just echo out the menu optsions with some color:

84

echo -ne "
My First Menu
$(ColorGreen '1)') Memory usage
$(ColorGreen '2)') CPU load
$(ColorGreen '3)') Number of TCP connections
$(ColorGreen '4)') Kernel version
$(ColorGreen '5)') Check All
$(ColorGreen '0)') Exit
$(ColorBlue 'Choose an option:') "

Then we read the answer of the user and store it in a variable called $a:

 read a

Finally, we have a switch case which triggers a different function depending on the
value of $a:

 case $a in
 1) memory_check ; menu ;;
 2) cpu_check ; menu ;;
 3) tcp_check ; menu ;;
 4) kernel_check ; menu ;;
 5) all_checks ; menu ;;
 0) exit 0 ;;
 *) echo -e $red"Wrong option."$clear;
WrongCommand;;
 esac

At the end we need to call the menu function to actually print out the menu:

Call the menu function
menu

85

Testing the script

In the end, your script will look like this:

#!/bin/bash

##
BASH menu script that checks:
- Memory usage
- CPU load
- Number of TCP connections
- Kernel version
##

server_name=$(hostname)

function memory_check() {
 echo ""
 echo "Memory usage on ${server_name} is: "
 free -h
 echo ""
}

function cpu_check() {
 echo ""
 echo "CPU load on ${server_name} is: "
 echo ""
 uptime
 echo ""
}

function tcp_check() {
 echo ""
 echo "TCP connections on ${server_name}: "
 echo ""
 cat /proc/net/tcp | wc -l
 echo ""
}

function kernel_check() {
 echo ""
 echo "Kernel version on ${server_name} is: "
 echo ""

86

 uname -r
 echo ""
}

function all_checks() {
 memory_check
 cpu_check
 tcp_check
 kernel_check
}

##
Color Variables
##
green='\e[32m'
blue='\e[34m'
clear='\e[0m'

##
Color Functions
##

ColorGreen(){
 echo -ne $green$1$clear
}
ColorBlue(){
 echo -ne $blue$1$clear
}

menu(){
echo -ne "
My First Menu
$(ColorGreen '1)') Memory usage
$(ColorGreen '2)') CPU load
$(ColorGreen '3)') Number of TCP connections
$(ColorGreen '4)') Kernel version
$(ColorGreen '5)') Check All
$(ColorGreen '0)') Exit
$(ColorBlue 'Choose an option:') "
 read a
 case $a in
 1) memory_check ; menu ;;
 2) cpu_check ; menu ;;
 3) tcp_check ; menu ;;
 4) kernel_check ; menu ;;
 5) all_checks ; menu ;;

87

 0) exit 0 ;;
 *) echo -e $red"Wrong option."$clear;
WrongCommand;;
 esac
}

Call the menu function
menu

To test the script, create a new filed with a .sh extension, for example: menu.sh and
then run it:

bash menu.sh

The output that you would get will look like this:

My First Menu
1) Memory usage
2) CPU load
3) Number of TCP connections
4) Kernel version
5) Check All
0) Exit
Choose an option:

You will be able to choose a different option from the list and each number will call a
different function from the script:

88

Conclusion

You now know how to create a Bash menu and implement it in your scripts so that
users could select different values!

Notice: This content was initially posted on DevDojo.com

https://devdojo.com/bobbyiliev/how-to-work-with-json-in-bash-using-jq

89

Executing BASH scripts on
Multiple Remote Servers

Any command that you can run from the command line can be used in a bash script.
Scripts are used to run a series of commands. Bash is available by default on Linux and
macOS operating systems.

Let's have a hypothetical scenario where you need to execute a BASH script on
multiple remote servers, but you don't want to manually copy the script to each server,
then again login to each server individually and only then execute the script.

Of course you could use a tool like Ansible but lets learn how to do that with Bash!

90

Prerequisites

For this example I will use 3 remote Ubuntu servers deployed on DigitalOcean. If you
don't have a Digital Ocean account yet, you can sign up for DigitalOcean and get $100
free credit via this referral link here:

https://m.do.co/c/2a9bba940f39

Once you have your Digital Ocean account ready go ahead and deploy 3 droplets.

I've gone ahead and created 3 Ubuntu servers:

I'll put a those servers IP's in a servers.txt file which I would use to loop though
with our Bash script.

If you are new to DigitalOcean you can follow the steps on how to create a Droplet
here:

How to Create a Droplet from the DigitalOcean Control Panel

You can also follow the steps from this video here on how to do your initial server
setup:

How to do your Initial Server Setup with Ubuntu

Or even better, you can follow this article here on how to automate your initial server
setup with Bash:

Automating Initial Server Setup with Ubuntu 18.04 with Bash

With the 3 new servers in place, we can go ahead and focus on running our Bash script
on all of them with a single command!

https://m.do.co/c/2a9bba940f39
https://www.digitalocean.com/docs/droplets/how-to/create/
https://youtu.be/7NL2_4HIgKU
https://www.digitalocean.com/community/tutorials/automating-initial-server-setup-with-ubuntu-18-04

91

The BASH Script

I will reuse the demo script from the previous chapter with some slight changes. It
simply executes a few checks like the current memory usage, the current CPU usage,
the number of TCP connections and the version of the kernel.

#!/bin/bash

##
BASH script that checks the following:
- Memory usage
- CPU load
- Number of TCP connections
- Kernel version
##

##
Memory check
##
server_name=$(hostname)

function memory_check() {
 echo "#######"
 echo "The current memory usage on ${server_name} is: "
 free -h
 echo "#######"
}

function cpu_check() {
 echo "#######"
 echo "The current CPU load on ${server_name} is: "
 echo ""
 uptime
 echo "#######"
}

function tcp_check() {
 echo "#######"
 echo "Total TCP connections on ${server_name}: "
 echo ""
 cat /proc/net/tcp | wc -l
 echo "#######"

92

}

function kernel_check() {
 echo "#######"
 echo "The exact Kernel version on ${server_name} is: "
 echo ""
 uname -r
 echo "#######"
}

function all_checks() {
 memory_check
 cpu_check
 tcp_check
 kernel_check
}

all_checks

Copy the code bellow and add this in a file called remote_check.sh. You can also
get the script from here.

https://devdojo.com/bobbyiliev/executing-bash-script-on-multiple-remote-server

93

Running the Script on all Servers

Now that we have the script and the servers ready and that we've added those servers
in our servers.txt file we can run the following command to loop though all servers and
execute the script remotely without having to copy the script to each server and
individually connect to each server.

for server in $(cat servers.txt) ; do ssh your_user@${server}
'bash -s' < ./remote_check.sh ; done

What this for loop does is, it goes through each server in the servers.txt file and then it
runs the following command for each item in the list:

ssh your_user@the_server_ip 'bash -s' < ./remote_check.sh

You would get the following output:

94

Conclusion

This is just a really simple example on how to execute a simple script on multiple
servers without having to copy the script to each server and without having to access
the servers individually.

Of course you could run a much more complex script and on many more servers.

If you are interested in automation, I would recommend checking out the Ansible
resources page on the DigitalOcean website:

Ansible Resources

Notice: This content was initially posted on DevDojo

https://www.digitalocean.com/community/tags/ansible
https://devdojo.com/bobbyiliev/bash-script-to-summarize-your-nginx-and-apache-access-logs

95

Work with JSON in BASH
using jq

The jq command-line tool is is a lightweight and flexible command-line JSON
processor. It is great for parsing JSON output in BASH.

One of the great things about jq is that it is written in portable C, and it has zero
runtime dependencies. All you need to do is to download a single binary or use a
package manager like apt and install it with a single command.

96

Planning the script

For the demo in this tutorial, I would use an external REST API that returns a simple
JSON ouput called the QuizAPI:

https://quizapi.io/

If you want to follow along make sure to get a free API key here:

https://quizapi.io/clientarea/settings/token

The QuizAPI is free for developers.

https://quizapi.io/
https://quizapi.io/
https://quizapi.io/clientarea/settings/token

97

Installing jq

There are many ways to install jq on your system. One of the most straight forward
ways to do so is to use the package manager depending on your OS.

Here is a list of the commands that you would need to use depending on your OS:

Install jq on Ubuntu/Debian:

sudo apt-get install jq

Install jq on Fedora:

sudo dnf install jq

Install jq on openSUSE:

sudo zypper install jq

Install jq on Arch:

sudo pacman -S jq

Installing on Mac with Homebrew:

brew install jq

Install on Mac with MacPort:

port install jq

If you are using other OS, I would recommend taking a look at the official

98

documentation here for more information:

https://stedolan.github.io/jq/download/

Once you have jq installed you can check your current version by running this
command:

jq --version

https://stedolan.github.io/jq/download/

99

Parsing JSON with jq

Once you have jq installed and your QuizAPI API Key, you can parse the JSON output
of the QuizAPI directly in your terminal.

First, create a variable that stores your API Key:

API_KEY=YOUR_API_KEY_HERE

In order to get some output from one of the endpoints of the QuizAPI you can use the
curl command:

curl
"https://quizapi.io/api/v1/questions?apiKey=${API_KEY}&limit=1
0"

For a more specific output, you can use the QuizAPI URL Generator here:

https://quizapi.io/api-config

After running the curl command, the output which you would get would look like this:

This could be quite hard to read, but thanks to the jq command-line tool, all we need to
do is pipe the curl command to jq and we would see a nice formated JSON output:

curl
"https://quizapi.io/api/v1/questions?apiKey=${API_KEY}&limit=1
0" | jq

Note the | jq at the end.

In this case the output that you would get would look something like this:

Now, this looks much nicer! The jq command-line tool formatted the output for us and

https://quizapi.io/api-config

100

added some nice coloring!

101

Getting the first element with jq

Let's say that we only wanted to get the first element from the JSON output, in order to
do that we have to just specify the index that we want to see with the following syntax:

jq .[0]

Now, if we run the curl command again and pipe the output to jq .[0] like this:

curl
"https://quizapi.io/api/v1/questions?apiKey=${API_KEY}&limit=1
0" | jq.[0]

You will only get the first element and the output will look like this:

102

Getting a value only for specific key

Sometimes you might want to get only the value of a specific key only, let's say in our
example the QuizAPI returns a list of questions along with the answers, description and
etc. but what if you wanted to get the Questions only without the additional
information?

This is going to be quite straight forward with jq, all you need to do is add the key
after jq command, so it would look something like this:

jq .[].question

We have to add the .[] as the QuizAPI returns an array and by specifying .[] we tell
jq that we want to get the .question value for all of the elements in the array.

The output that you would get would look like this:

As you can see we now only get the questions without the rest of the values.

103

Using jq in a BASH script

Let's go ahead and create a small bash script which should output the following
information for us:

Get only the first question from the output
Get all of the answers for that question
Assign the answers to variables
Print the question and the answers
To do that I've put together the following script:

Notice: make sure to change the API_KEY part with your actual QuizAPI key:

104

#!/bin/bash

##
Make an API call to QuizAPI and store the output in a
variable
##
output=$(curl
'https://quizapi.io/api/v1/questions?apiKey=API_KEY&limit=10'
2>/dev/null)

##
Get only the first question
##
output=$(echo $output | jq .[0])

##
Get the question
##
question=$(echo $output | jq .question)

##
Get the answers
##

answer_a=$(echo $output | jq .answers.answer_a)
answer_b=$(echo $output | jq .answers.answer_b)
answer_c=$(echo $output | jq .answers.answer_c)
answer_d=$(echo $output | jq .answers.answer_d)

##
Output the question
##

echo "
Question: ${question}

A) ${answer_a}
B) ${answer_b}
C) ${answer_c}
D) ${answer_d}

"

If you run the script you would get the following output:

105

We can even go further by making this interactive so that we could actually choose the
answer directly in our terminal.

There is already a bash script that does this by using the QuizAPI and jq:

You can take a look at that script here:

https://github.com/QuizApi/QuizAPI-BASH/blob/master/quiz.sh

https://github.com/QuizApi/QuizAPI-BASH/blob/master/quiz.sh

106

Conclusion

The jq command-line tool is an amazing tool that gives you the power to work with
JSON directly in your BASH terminal.

That way you can easily interact with all kinds of different REST APIs with BASH.

For more information, you could take a look at the official documentation here:

https://stedolan.github.io/jq/manual/

And for more information on the QuizAPI, you could take a look at the official
documentation here:

https://quizapi.io/docs/1.0/overview

Notice: This content was initially posted on DevDojo.com

https://stedolan.github.io/jq/manual/
https://quizapi.io/docs/1.0/overview
https://devdojo.com/bobbyiliev/how-to-work-with-json-in-bash-using-jq

107

Working with Cloudflare API
with Bash

I host all of my websites on DigitalOcean Droplets and I also use Cloudflare as my
CDN provider. One of the benefits of using Cloudflare is that it reduces the overall
traffic to your user and also hides your actual server IP address behind their CDN.

My personal favorite Cloudflare feature is their free DDoS protection. It has saved my
servers multiple times from different DDoS attacks. They have a cool API that you
could use to enable and disable their DDoS protection easily.

This chapter is going to be an exercise! I challenge you to go ahead and write a short
bash script that would enable and disable the Cloudflare DDoS protection for your
server automatically if needed!

108

Prerequisites

Before following this guide here, please set up your Cloudflare account and get your
website ready. If you are not sure how to do that you can follow these steps here:
Create a Cloudflare account and add a website.

Once you have your Cloudflare account, make sure to obtain the following information:

A Cloudflare account
Cloudflare API key
Cloudflare Zone ID

Also, Make sure curl is installed on your server:

curl --version

If curl is not installed you need to run the following:

For RedHat/CentOs:

yum install curl

For Debian/Ubuntu

apt-get install curl

https://support.cloudflare.com/hc/en-us/articles/201720164-Step-2-Create-a-Cloudflare-account-and-add-a-website

109

Challenge - Script requirements

The script needs to monitor the CPU usage on your server and if the CPU usage gets
high based on the number vCPU it would enable the Cloudflare DDoS protection
automatically via the Cloudflare API.

The main features of the script should be:

Checks the script CPU load on the server
In case of a CPU spike the script triggers an API call to Cloudflare and enables
the DDoS protection feature for the specified zone
After the CPU load is back to normal the script would disable the "I'm under
attack" option and set it back to normal

110

Example script

I already have prepared a demo script which you could use as a reference. But I
encourage you to try and write the script yourself first and only then take a look at my
script!

To download the script just run the following command:

wget
https://raw.githubusercontent.com/bobbyiliev/cloudflare-ddos-p
rotection/main/protection.sh

Open the script with your favorite text editor:

nano protection.sh

And update the following details with your Cloudflare details:

CF_CONE_ID=YOUR_CF_ZONE_ID
CF_EMAIL_ADDRESS=YOUR_CF_EMAIL_ADDRESS
CF_API_KEY=YOUR_CF_API_KEY

After that make the script executable:

chmod +x ~/protection.sh

Finally, set up 2 Cron jobs to run every 30 seconds. To edit your crontab run:

crontab -e

And add the following content:

111

* * * * * /path-to-the-script/cloudflare/protection.sh
* * * * * (sleep 30 ; /path-to-the-
script/cloudflare/protection.sh)

Note that you need to change the path to the script with the actual path where you've
stored the script at.

112

Conclusion

This is quite straight forward and budget solution, one of the downsides of the script is
that if your server gets unresponsive due to an attack, the script might not be triggered
at all.

Of course, a better approach would be to use a monitoring system like Nagios and
based on the statistics from the monitoring system then you can trigger the script, but
this script challenge could be a good learning experience!

Here is another great resource on how to use the Discord API and send notifications to
your Discord Channel with a Bash script:

How To Use Discord Webhooks to Get Notifications for Your Website Status on Ubuntu
18.04

Notice: This content was initially posted on DevDojo

https://www.digitalocean.com/community/tutorials/how-to-use-discord-webhooks-to-get-notifications-for-your-website-status-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-use-discord-webhooks-to-get-notifications-for-your-website-status-on-ubuntu-18-04
https://devdojo.com/bobbyiliev/bash-script-to-automatically-enable-cloudflare-ddos-protection

113

BASH Script parser to
Summarize Your NGINX and
Apache Access Logs

One of the first things that I would usually do in case I notice a high CPU usage on
some of my Linux servers would be to check the process list with either top or htop and
in case that I notice a lot of Apache or Nginx process I would quickly check my access
logs to determine what has caused or is causing the CPU spike on my server or to
figure out if anything malicious is going on.

Sometimes reading the logs could be quite intimidating as the log might be huge and
going though it manually could take a lot of time. Also, the raw log format could be
confusing for people with less experience.

Just like the previous chapter, this chapter is going to be a challenge! You need to
write a short bash script that would summarize the whole access log for you without
the need of installing any additional software.

114

Script requirements

This BASH script needs to parse and summarize your access logs and provide you with
very useful information like:

The 20 top pages with the most POST requests
The 20 top pages with the most GET requests
Top 20 IP addresses and their geo-location

115

Example script

I already have prepared a demo script which you could use as a reference. But I
encourage you to try and write the script yourself first and only then take a look at my
script!

In order to download the script, you can either clone the repository with the following
command:

git clone
https://github.com/bobbyiliev/quick_access_logs_summary.git

Or run the following command which would download the script in your current
directory:

wget
https://raw.githubusercontent.com/bobbyiliev/quick_access_logs
_summary/master/spike_check

The script does not make any changes to your system, it only reads the content of your
access log and summarizes it for you, however, once you've downloaded the file, make
sure to review the content yourself.

116

Running the script

All that you have to do once the script has been downloaded is to make it executable
and run it.

To do that run the following command to make the script executable:

chmod +x spike_check

Then run the script:

./spike_check /path/to/your/access_log

Make sure to change the path to the file with the actual path to your access log. For
example if you are using Apache on an Ubuntu server, the exact command would look
like this:

./spike_check /var/log/apache2/access.log

If you are using Nginx the exact command would be almost the same, but with the path
to the Nginx access log:

./spike_check /var/log/nginx/access.log

117

Understanding the output

Once you run the script, it might take a while depending on the size of the log.

The output that you would see should look like this:

Essentially what we can tell in this case is that we've received 16 POST requests to our
xmlrpc.php file which is often used by attackers to try and exploit WordPress websites
by using various username and password combinations.

In this specific case, this was not a huge brute force attack, but it gives us an early
indication and we can take action to prevent a larger attack in the future.

We can also see that there were a couple of Russian IP addresses accessing our site, so
in case that you do not expect any traffic from Russia, you might want to block those IP
addresses as well.

118

Conclusion

This is an example of a simple BASH script that allows you to quickly summarize your
access logs and determine if anything malicious is going on.

Of course, you might want to also manually go through the logs as well but it is a good
challenge to try and automate this with Bash!

Notice: This content was initially posted on DevDojo

https://devdojo.com/bobbyiliev/bash-script-to-summarize-your-nginx-and-apache-access-logs

119

Sending emails with Bash and
SSMTP

SSMTP is a tool that delivers emails from a computer or a server to a configured mail
host.

SSMTP is not an email server itself and does not receive emails or manage a queue.

One of its primary uses is for forwarding automated email (like system alerts) off your
machine and to an external email address.

120

Prerequisites

You would need the following things in order to be able to complete this tutorial
successfully:

Access to an Ubuntu 18.04 server as a non-root user with sudo privileges and an
active firewall installed on your server. To set these up, please refer to our Initial
Server Setup Guide for Ubuntu 18.04

An SMTP server along with SMTP username and password, this would also work
with Gmail's SMTP server, or you could set up your own SMTP server by
following the steps from this tutorial on
[https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-
postfix-as-a-send-only-smtp-server-on-ubuntu-16-04](How to Install and
Configure Postfix as a Send-Only SMTP Server on Ubuntu 16.04)

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04

121

Installing SSMTP

In order to install SSMTP, you’ll need to first update your apt cache with:

sudo apt update

Then run the following command to install SSMTP:

sudo apt install ssmtp

Another thing that you would need to install is mailutils, to do that run the
following command:

sudo apt install mailutils

122

Configuring SSMTP

Now that you have ssmtp installed, in order to configure it to use your SMTP server
when sending emails, you need to edit the SSMTP configuration file.

Using your favourite text editor opent the /etc/ssmtp/ssmtp.conf file:

sudo nano /etc/ssmtp/ssmtp.conf

You need to incldue the your SMTP configuration:

root=postmaster
mailhub=<^>your_smtp_host.com<^>:587
hostname=<^>your_hostname<^>
AuthUser=<^>your_gmail_username@your_smtp_host.com<^>
AuthPass=<^>your_gmail_password<^>
FromLineOverride=YES
UseSTARTTLS=YES

Save the file and exit.

123

Sending emails with SSMTP

Once your configuration is done, in order to send an email just run the following
command:

echo "<^>Here add your email body<^>" | mail -s "<^>Here
specify your email subject<^>"
<^>your_recepient_email@yourdomain.com<^>

You can run this directly in your terminal or include it in your bash scripts.

124

Sending A File with SSMTP (optional)

If you need to send files as attachments, you can use mpack.

To install mpack run the following command:

sudo apt install mpack

Next, in order to send an email with a file attached, run the following command.

mpack -s "<^>Your Subject here<^>" your_file.zip
<^>your_recepient_email@yourdomain.com<^>

The above command would send an email to
<^>your_recepient_email@yourdomain.com<^> with the
<^>your_file.zip<^> attached.

125

Conclusion

SSMTP is a great and reliable way to implement SMTP email functionality directly in
bash scripts.

For more information about SSMTP I would recommend checking the official
documentation here.

Notice: This content was initially posted on the DigitalOcean community forum.

https://wiki.archlinux.org/index.php/SSMTP
https://www.digitalocean.com/community/questions/how-to-send-emails-from-a-bash-script-using-ssmtp

126

Password Generator Bash
Script

It's not uncommon situation where you will need to generate a random password that
you can use for any software installation or when you sign-up to any website.

There are a lot of options in order to achieve this. You can use a password
manager/vault where you often have the option to randomly generate a password or to
use a website that can generate the password on your behalf.

You can also use Bash in your terminal (command-line) to generate a password that
you can quickly use. There are a lot of ways to achieve that and I will make sure to
cover few of them and will leave up to you to choose which option is most suitable with
your needs.

127

:warning: Security

This script is intended to practice your bash scripting skills. You can have fun
while doing simple projects with BASH, but security is not a joke, so please
make sure you do not save your passwords in plain text in a local file or write
them down by hand on a piece of paper.

I will highly recommend everyone to use secure and trusted providers to
generate and save the passwords.

128

Script summary

Let me first do a quick summary of what our script is going to do.:

We will have to option to choose the password characters length when the script1.
is executed.
The script will then generate 5 random passwords with the length that was2.
specified in step 1

129

Prerequisites

You would need a bash terminal and a text editor. You can use any text editor like vi,
vim, nano or Visual Studio Code.

I'm running the script locally on my Linux laptop but if you're using Windows PC you
can ssh to any server of your choice and execute the script there.

Although the script is pretty simple, having some basic BASH scripting knowledge will
help you to better understand the script and how it's working.

130

Generate a random password

One of the great benefits of Linux is that you can do a lot of things using different
methods. When it comes to generating a random string of characters it's not different
as well.

You can use several commands in order to generate a random string of characters. I
will cover few of them and will provide some examples.

Using the date command. The date command will output the current date and
time. However we also further manipulate the output in order to use it as
randomly generated password. We can hash the date using md5, sha or just run
it through base64. These are few examples:

date | md5sum
94cb1cdecfed0699e2d98acd9a7b8f6d -

using sha256sum:

date | sha256sum
30a0c6091e194c8c7785f0d7bb6e1eac9b76c0528f02213d1b6a5fbcc76cef
f4 -

using base64:

date | base64
0YHQsSDRj9C90YMgMzAgMTk6NTE6NDggRUVUIDIwMjEK

We can also use openssl in order to generate pseudo-random bytes and run the
output through base64. An example output will be:

openssl rand -base64 10
9+soM9bt8mhdcw==

Keep in mind that openssl might not be installed on your system so it's likely that you
will need to install it first in order to use it.

131

The most preferred way is to use the pseudorandom number generator -
/dev/urandom since it is intended for most cryptographic purposes. We would
also need to manipulate the output using tr in order to translate it. An example
command is:

tr -cd '[:alnum:]' < /dev/urandom | fold -w10 | head -n 1

With this command we take the output from /dev/urandom and translate it with tr
while using all letters and digits and print the desired number of characters.

132

The script

First we begin the script with the shebang. We use it to tell the operating system which
interpreter to use to parse the rest of the file.

#!/bin/bash

We can then continue and ask the user for some input. In this case we would like to
know how many characters the password needs to be:

Ask user for password length
clear
printf "\n"
read -p "How many characters you would like the password to
have? " pass_length
printf "\n"

Generate the passwords and then print it so the user can use it.

This is where the magic happens!
Generate a list of 10 strings and cut it to the desired
value provided from the user

for i in {1..10}; do (tr -cd '[:alnum:]' < /dev/urandom | fold
-w${pass_lenght} | head -n 1); done

Print the strings
printf "$pass_output\n"
printf "Goodbye, ${USER}\n"

133

The full script:

#!/bin/bash
#=======================================
Password generator with login option
#=======================================

Ask user for the string length
clear
printf "\n"
read -p "How many characters you would like the password to
have? " pass_lenght
printf "\n"

This is where the magic happens!
Generate a list of 10 strings and cut it to the desired
value provided from the user

for i in {1..10}; do (tr -cd '[:alnum:]' < /dev/urandom | fold
-w${pass_lenght} | head -n 1); done

Print the strings
printf "$pass_output\n"
printf "Goodbye, ${USER}\n"

134

Conclusion

This is pretty much how you can use simple bash script to generate random passwords.

:warning: As already mentioned, please make sure to use strong passwords in
order to make sure your account is protected. Also whenever is possible use 2
factor authentication as this will provide additional layer of security for your
account.

While the script is working fine, it expects that the user will provide the requested
input. In order to prevent any issues you would need to do some more advance checks
on the user input in order to make sure the script will continue to work fine even if the
provided input does not match our needs.

135

Contributed by

Alex Georgiev

https://twitter.com/alexgeorgiev17

136

Redirection in Bash

A Linux superuser must have a good knowledge of pipes and redirection in Bash. It is
an essential component of the system and is often helpful in the field of Linux System
Administration.

When you run a command like ls, cat, etc, you get some output on the terminal. If
you write a wrong command, pass a wrong flag or a wrong command-line argument,
you get error output on the terminal. In both the cases, you are given some text. It may
seem like "just text" to you, but the system treats this text differently. This identifier is
known as a File Descriptor (fd).

In Linux, there are 3 File Descriptors, STDIN (0); STDOUT (1) and STDERR (2).

STDIN (fd: 0): Manages the input in the terminal.
STDOUT (fd: 1): Manages the output text in the terminal.
STDERR (fd: 2): Manages the error text in the terminal.

137

Difference between Pipes and
Redirections

Both pipes and redidertions redirect streams (file descriptor) of process being
executed. The main diffrence is that redirections deal with files stream, sending
the output stream to a file or sending the content of a given file to the input stream of
the process.

On the otherhand a pipe connects two commands by sending the output stream of the
first one to the input stream of the second one. without any redidertions specified.

138

Redirection in Bash

139

STDIN (Standard Input)

When you enter some input text for a command that asks for it, you are actually
entering the text to the STDIN file descriptor. Run the cat command without any
command-line arguments. It may seem that the process has paused but in fact it's cat
asking for STDIN. cat is a simple program and will print the text passed to STDIN.
However, you can extend the use case by redirecting the input to the commands that
take STDIN.

Example with cat:

cat << EOF
Hello World!
How are you?
EOF

This will simply print the provided text on the terminal screen:

Hello World!
How are you?

The same can be done with other commands that take input via STDIN. Like, wc:

wc -l << EOF
Hello World!
How are you?
EOF

The -l flag with wc counts the number of lines. This block of bash code will print the
number of lines to the terminal screen:

2

140

STDOUT (Standard Output)

The normal non-error text on your terminal screen is printed via the STDOUT file
descriptor. The STDOUT of a command can be redirected into a file, in such a way that
the output of the command is written to a file instead of being printed on the terminal
screen. This is done simply with the help of > and >> operators.

Example:

echo "Hello World!" > file.txt

The following command will not print "Hello World" on the terminal screen, it will
instead create a file called file.txt and will write the "Hello World" string to it. This
can be verified by runnning the cat command on the file.txt file.

cat file.txt

However, everytime you redirect the STDOUT of any command multiple times to the
same file, it will remove the existing contents of the file to write the new ones.

Example:

echo "Hello World!" > file.txt
echo "How are you?" > file.txt

On running cat on file.txt file:

cat file.txt

You will only get the "How are you?" string printed.

How are you?

This is because the "Hello World" string has been overwritten. This behaviour can be

141

avoided using the >> operator.

The above example can be written as:

echo "Hello World!" > file.txt
echo "How are you?" >> file.txt

On running cat on the file.txt file, you will get the desired result.

Hello World!
How are you?

Alternatively, the redirection operator for STDOUT can also be written as 1>. Like,

echo "Hello World!" 1> file.txt

142

STDERR (Standard Error)

The error text on the terminal screen is printed via the STDERR of the the command.
For example:

ls --hello

would give an error messages. This error message is the STDERR of the command.

STDERR can be redirected using the 2> operator.

ls --hello 2> error.txt

This command will redirect the error message to the error.txt file and write it to it.
This can be verified by running the cat command on the error.txt file.

You can also use the 2>> operator for STDERR just like you used >> for STDOUT.

Error messages in Bash Scripts can be undesirable sometimes. You can choose to
ignore them by redirecting the error message to the /dev/null file. /dev/null is
pseudo-device that takes in text and then immediately discards it.

The above example can be written follows to ignore the error text completely:

ls --hello 2> /dev/null

Of course, you can redirect both STDOUT and STDERR for the same command or
script.

./install_package.sh > output.txt 2> error.txt

Both of them can be redirected to the same file as well.

143

./install_package.sh > file.txt 2> file.txt

There is also a shorter way to do this.

./install_package.sh > file.txt 2>&1

144

Piping

So far we have seen how to redirect the STDOUT, STDIN and STDOUT to and from a
file. To concatenate the output of program (command) as the input of another program
(command) you can use a vertical bar |.

Example:

ls | grep ".txt"

This command will list the files in the current directory and pass output to grep
command which then filter the output to only show the files that contain the string
".txt".

Syntax:

[time [-p]] [!] command1 [| or |& command2] …

You can also build arbitrary chains of commands by piping them together to achieve a
powerful result.

This examble create a listing of every user which owns a file in a given directory as
well as how many files and directories they own:

ls -l /projects/bash_scripts | tail -n +2 | sed 's/\s\s*/ /g'
| cut -d ' ' -f 3 | sort | uniq -c

Output:

145

8 anne
34 harry
37 tina
18 ryan

146

HereDocument

The symbol << can be used to create a temporary file [heredoc] and redirect from it at
the command line.

COMMAND << EOF
 ContentOfDocument
 ...
 ...
EOF

Note here that EOF represents the delimiter (end of file) of the heredoc. In fact, we can
use any alphanumeric word in it's place to signify the start and the end of the file. For
instance, this is a valid heredoc:

cat << randomword1
 This script will print these lines on the terminal.
 Note that cat can read from standard input. Using this
heredoc, we can
 create a temporary file with these lines as it's
content and pipe that
 into cat.
randomword1

Effectively it will appear as if the contents of the heredoc are piped into the command.
This can make the script very clean if multiple lines need to be piped into a program.

Further, we can attach more pipes as shown:

147

cat << randomword1 | wc
 This script will print these lines on the terminal.
 Note that cat can read from standard input. Using this
heredoc, we can
 create a temporary file with these lines as it's
content and pipe that
 into cat.
randomword1

Also, pre-defined variables can be used inside the heredocs.

148

HereString

Herestrings are quite similar to heredocs but use <<<. These are used for single line
strings that have to be piped into some program. This looks cleaner that heredocs as
we don't have to specify the delimiter.

wc <<<"this is an easy way of passing strings to the stdin of
a program (here wc)"

Just like heredocs, herestrings can contain variables.

149

Summary

Operator Description
> Save output to a file
>> Append output to a file
< Read input from a file
2> Redirect error messages

| Send the output from one program as input to another
program

<< Pipe multiple lines into a program cleanly
<<< Pipe a single line into a program cleanly

150

Automatic Wordpress on
LAMP installation with BASH

Here is an example of a full LAMP and Wordpress installation that works on any
Debian-based machine.

151

Prerequisites

A Debian-based machine (Ubuntu, Debian, Linux Mint, etc.)

152

Planning the functionality

Let's start again by going over the main functionality of the script:

Lamp Installation

Update the package manager
Install a firewall (ufw)
Allow SSH, HTTP and HTTPS traffic
Install Apache2
Install & Configure MariaDB
Install PHP and required plugins
Enable all required Apache2 mods

Apache Virtual Host Setup

Create a directory in /var/www
Configure permissions to the directory
Create the $domain file under /etc/apache2/sites-available and
append the required Virtualhost content
Enable the site
Restart Apache2

SSL Config

Generate the OpenSSL certificate
Append the SSL certificate to the ssl-params.conf file
Append the SSL config to the Virtualhost file
Enable SSL
Reload Apache2

Database Config

Create a database
Create a user
Flush Privileges

Wordpress Config

Install required Wordpress PHP plugins
Install Wordpress

153

Append the required information to wp-config.php file

Without further ado, let's start writing the script.

154

The script

We start by setting our variables and asking the user to input their domain:

echo 'Please enter your domain of preference without www:'
read DOMAIN
echo "Please enter your Database username:"
read DBUSERNAME
echo "Please enter your Database password:"
read DBPASSWORD
echo "Please enter your Database name:"
read DBNAME

ip=`hostname -I | cut -f1 -d' '`

We are now ready to start writing our functions. Start by creating the
lamp_install() function. Inside of it, we are going to update the system, install
ufw, allow SSH, HTTP and HTTPS traffic, install Apache2, install MariaDB and PHP.
We are also going to enable all required Apache2 mods.

155

lamp_install () {
 apt update -y
 apt install ufw
 ufw enable
 ufw allow OpenSSH
 ufw allow in "WWW Full"

 apt install apache2 -y
 apt install mariadb-server
 mysql_secure_installation -y
 apt install php libapache2-mod-php php-mysql -y
 sed -i "2d" /etc/apache2/mods-enabled/dir.conf
 sed -i "2i\\\tDirectoryIndex index.php index.html
index.cgi index.pl index.xhtml index.htm" /etc/apache2/mods-
enabled/dir.conf
 systemctl reload apache2
}

Next, we are going to create the apache_virtualhost_setup() function. Inside
of it, we are going to create a directory in /var/www, configure permissions to the
directory, create the $domain file under /etc/apache2/sites-available and
append the required Virtualhost content, enable the site and restart Apache2.

156

apache_virtual_host_setup () {
 mkdir /var/www/$DOMAIN
 chown -R $USER:$USER /var/www/$DOMAIN

 echo "<VirtualHost *:80>" >> /etc/apache2/sites-
available/$DOMAIN.conf
 echo -e "\tServerName $DOMAIN" >> /etc/apache2/sites-
available/$DOMAIN.conf
 echo -e "\tServerAlias www.$DOMAIN" >>
/etc/apache2/sites-available/$DOMAIN.conf
 echo -e "\tServerAdmin webmaster@localhost" >>
/etc/apache2/sites-available/$DOMAIN.conf
 echo -e "\tDocumentRoot /var/www/$DOMAIN" >>
/etc/apache2/sites-available/$DOMAIN.conf
 echo -e '\tErrorLog ${APACHE_LOG_DIR}/error.log' >>
/etc/apache2/sites-available/$DOMAIN.conf
 echo -e '\tCustomLog ${APACHE_LOG_DIR}/access.log
combined' >> /etc/apache2/sites-available/$DOMAIN.conf
 echo "</VirtualHost>" >> /etc/apache2/sites-
available/$DOMAIN.conf
 a2ensite $DOMAIN
 a2dissite 000-default
 systemctl reload apache2

}

Next, we are going to create the ssl_config() function. Inside of it, we are going to
generate the OpenSSL certificate, append the SSL certificate to the ssl-
params.conf file, append the SSL config to the Virtualhost file, enable SSL and
reload Apache2.

ssl_config () {
 openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout /etc/ssl/private/apache-selfsigned.key -out
/etc/ssl/certs/apache-selfsigned.crt
 echo "SSLCipherSuite
EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH" >>
/etc/apache2/conf-available/ssl-params.conf
 echo "SSLProtocol All -SSLv2 -SSLv3 -TLSv1 -TLSv1.1"
>> /etc/apache2/conf-available/ssl-params.conf
 echo "SSLHonorCipherOrder On" >> /etc/apache2/conf-
available/ssl-params.conf
 echo "Header always set X-Frame-Options DENY" >>

157

/etc/apache2/conf-available/ssl-params.conf
 echo "Header always set X-Content-Type-Options
nosniff" >> /etc/apache2/conf-available/ssl-params.conf
 echo "SSLCompression off" >> /etc/apache2/conf-
available/ssl-params.conf
 echo "SSLUseStapling on" >> /etc/apache2/conf-
available/ssl-params.conf
 echo "SSLStaplingCache \"shmcb:logs/stapling-
cache(150000)\"" >> /etc/apache2/conf-available/ssl-
params.conf
 echo "SSLSessionTickets Off" >> /etc/apache2/conf-
available/ssl-params.conf
 cp /etc/apache2/sites-available/default-ssl.conf
/etc/apache2/sites-available/default-ssl.conf.bak
 sed -i "s/var\/www\/html/var\/www\/$DOMAIN/1"
/etc/apache2/sites-available/default-ssl.conf
 sed -i "s/etc\/ssl\/certs\/ssl-cert-
snakeoil.pem/etc\/ssl\/certs\/apache-selfsigned.crt/1"
/etc/apache2/sites-available/default-ssl.conf
 sed -i "s/etc\/ssl\/private\/ssl-cert-
snakeoil.key/etc\/ssl\/private\/apache-selfsigned.key/1"
/etc/apache2/sites-available/default-ssl.conf
 sed -i "4i\\\t\tServerName $ip" /etc/apache2/sites-
available/default-ssl.conf
 sed -i "22i\\\tRedirect permanent \"/\"
\"https://$ip/\"" /etc/apache2/sites-available/000-
default.conf
 a2enmod ssl
 a2enmod headers
 a2ensite default-ssl
 a2enconf ssl-params
 systemctl reload apache2
}

Next, we are going to create the db_setup() function. Inside of it, we are going to
create the database, create the user and grant all privileges to the user.

158

db_config () {
 mysql -e "CREATE DATABASE $DBNAME;"
 mysql -e "GRANT ALL ON $DBNAME.* TO
'$DBUSERNAME'@'localhost' IDENTIFIED BY '$DBPASSWORD' WITH
GRANT OPTION;"
 mysql -e "FLUSH PRIVILEGES;"
}

Next, we are going to create the wordpress_config() function. Inside of it, we are
going to download the latest version of WordPress, extract it to the
/var/www/$DOMAIN directory, create the wp-config.php file and append the
required content to it.

159

wordpress_config () {
 db_config

 apt install php-curl php-gd php-mbstring php-xml php-
xmlrpc php-soap php-intl php-zip -y
 systemctl restart apache2
 sed -i "8i\\\t<Directory /var/www/$DOMAIN/>"
/etc/apache2/sites-available/$DOMAIN.conf
 sed -i "9i\\\t\tAllowOverride All" /etc/apache2/sites-
available/$DOMAIN.conf
 sed -i "10i\\\t</Directory>" /etc/apache2/sites-
available/$DOMAIN.conf

 a2enmod rewrite
 systemctl restart apache2

 apt install curl
 cd /tmp
 curl -O https://wordpress.org/latest.tar.gz
 tar xzvf latest.tar.gz
 touch /tmp/wordpress/.htaccess
 cp /tmp/wordpress/wp-config-sample.php
/tmp/wordpress/wp-config.php
 mkdir /tmp/wordpress/wp-content/upgrade
 cp -a /tmp/wordpress/. /var/www/$DOMAIN
 chown -R www-data:www-data /var/www/$DOMAIN
 find /var/www/$DOMAIN/ -type d -exec chmod 750 {} \;
 find /var/www/$DOMAIN/ -type f -exec chmod 640 {} \;
 curl -s https://api.wordpress.org/secret-key/1.1/salt/
>> /var/www/$DOMAIN/wp-config.php
 echo "define('FS_METHOD', 'direct');" >>
/var/www/$DOMAIN/wp-config.php
 sed -i "51,58d" /var/www/$DOMAIN/wp-config.php
 sed -i "s/database_name_here/$DBNAME/1"
/var/www/$DOMAIN/wp-config.php
 sed -i "s/username_here/$DBUSERNAME/1"
/var/www/$DOMAIN/wp-config.php
 sed -i "s/password_here/$DBPASSWORD/1"
/var/www/$DOMAIN/wp-config.php
}

And finally, we are going to create the execute() function. Inside of it, we are going
to call all the functions we created above.

160

execute () {
 lamp_install
 apache_virtual_host_setup
 ssl_config
 wordpress_config
}

With this, you have the script ready and you are ready to run it. And if you need the full
script, you can find it in the next section.

161

The full script

#!/bin/bash

echo 'Please enter your domain of preference without www:'
read DOMAIN
echo "Please enter your Database username:"
read DBUSERNAME
echo "Please enter your Database password:"
read DBPASSWORD
echo "Please enter your Database name:"
read DBNAME

ip=`hostname -I | cut -f1 -d' '`

lamp_install () {
 apt update -y
 apt install ufw
 ufw enable
 ufw allow OpenSSH
 ufw allow in "WWW Full"

 apt install apache2 -y
 apt install mariadb-server
 mysql_secure_installation -y
 apt install php libapache2-mod-php php-mysql -y
 sed -i "2d" /etc/apache2/mods-enabled/dir.conf
 sed -i "2i\\\tDirectoryIndex index.php index.html
index.cgi index.pl index.xhtml index.htm" /etc/apache2/mods-
enabled/dir.conf
 systemctl reload apache2
}

apache_virtual_host_setup () {
 mkdir /var/www/$DOMAIN
 chown -R $USER:$USER /var/www/$DOMAIN

 echo "<VirtualHost *:80>" >> /etc/apache2/sites-
available/$DOMAIN.conf
 echo -e "\tServerName $DOMAIN" >> /etc/apache2/sites-

162

available/$DOMAIN.conf
 echo -e "\tServerAlias www.$DOMAIN" >>
/etc/apache2/sites-available/$DOMAIN.conf
 echo -e "\tServerAdmin webmaster@localhost" >>
/etc/apache2/sites-available/$DOMAIN.conf
 echo -e "\tDocumentRoot /var/www/$DOMAIN" >>
/etc/apache2/sites-available/$DOMAIN.conf
 echo -e '\tErrorLog ${APACHE_LOG_DIR}/error.log' >>
/etc/apache2/sites-available/$DOMAIN.conf
 echo -e '\tCustomLog ${APACHE_LOG_DIR}/access.log
combined' >> /etc/apache2/sites-available/$DOMAIN.conf
 echo "</VirtualHost>" >> /etc/apache2/sites-
available/$DOMAIN.conf
 a2ensite $DOMAIN
 a2dissite 000-default
 systemctl reload apache2

}

ssl_config () {
 openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout /etc/ssl/private/apache-selfsigned.key -out
/etc/ssl/certs/apache-selfsigned.crt
 echo "SSLCipherSuite
EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH" >>
/etc/apache2/conf-available/ssl-params.conf
 echo "SSLProtocol All -SSLv2 -SSLv3 -TLSv1 -TLSv1.1"
>> /etc/apache2/conf-available/ssl-params.conf
 echo "SSLHonorCipherOrder On" >> /etc/apache2/conf-
available/ssl-params.conf
 echo "Header always set X-Frame-Options DENY" >>
/etc/apache2/conf-available/ssl-params.conf
 echo "Header always set X-Content-Type-Options
nosniff" >> /etc/apache2/conf-available/ssl-params.conf
 echo "SSLCompression off" >> /etc/apache2/conf-
available/ssl-params.conf
 echo "SSLUseStapling on" >> /etc/apache2/conf-
available/ssl-params.conf
 echo "SSLStaplingCache \"shmcb:logs/stapling-
cache(150000)\"" >> /etc/apache2/conf-available/ssl-
params.conf
 echo "SSLSessionTickets Off" >> /etc/apache2/conf-
available/ssl-params.conf
 cp /etc/apache2/sites-available/default-ssl.conf
/etc/apache2/sites-available/default-ssl.conf.bak

163

 sed -i "s/var\/www\/html/var\/www\/$DOMAIN/1"
/etc/apache2/sites-available/default-ssl.conf
 sed -i "s/etc\/ssl\/certs\/ssl-cert-
snakeoil.pem/etc\/ssl\/certs\/apache-selfsigned.crt/1"
/etc/apache2/sites-available/default-ssl.conf
 sed -i "s/etc\/ssl\/private\/ssl-cert-
snakeoil.key/etc\/ssl\/private\/apache-selfsigned.key/1"
/etc/apache2/sites-available/default-ssl.conf
 sed -i "4i\\\t\tServerName $ip" /etc/apache2/sites-
available/default-ssl.conf
 sed -i "22i\\\tRedirect permanent \"/\"
\"https://$ip/\"" /etc/apache2/sites-available/000-
default.conf
 a2enmod ssl
 a2enmod headers
 a2ensite default-ssl
 a2enconf ssl-params
 systemctl reload apache2
}
db_config () {
 mysql -e "CREATE DATABASE $DBNAME;"
 mysql -e "GRANT ALL ON $DBNAME.* TO
'$DBUSERNAME'@'localhost' IDENTIFIED BY '$DBPASSWORD' WITH
GRANT OPTION;"
 mysql -e "FLUSH PRIVILEGES;"
}

wordpress_config () {
 db_config

 apt install php-curl php-gd php-mbstring php-xml php-
xmlrpc php-soap php-intl php-zip -y
 systemctl restart apache2
 sed -i "8i\\\t<Directory /var/www/$DOMAIN/>"
/etc/apache2/sites-available/$DOMAIN.conf
 sed -i "9i\\\t\tAllowOverride All" /etc/apache2/sites-
available/$DOMAIN.conf
 sed -i "10i\\\t</Directory>" /etc/apache2/sites-
available/$DOMAIN.conf

 a2enmod rewrite
 systemctl restart apache2

 apt install curl
 cd /tmp
 curl -O https://wordpress.org/latest.tar.gz

164

 tar xzvf latest.tar.gz
 touch /tmp/wordpress/.htaccess
 cp /tmp/wordpress/wp-config-sample.php
/tmp/wordpress/wp-config.php
 mkdir /tmp/wordpress/wp-content/upgrade
 cp -a /tmp/wordpress/. /var/www/$DOMAIN
 chown -R www-data:www-data /var/www/$DOMAIN
 find /var/www/$DOMAIN/ -type d -exec chmod 750 {} \;
 find /var/www/$DOMAIN/ -type f -exec chmod 640 {} \;
 curl -s https://api.wordpress.org/secret-key/1.1/salt/
>> /var/www/$DOMAIN/wp-config.php
 echo "define('FS_METHOD', 'direct');" >>
/var/www/$DOMAIN/wp-config.php
 sed -i "51,58d" /var/www/$DOMAIN/wp-config.php
 sed -i "s/database_name_here/$DBNAME/1"
/var/www/$DOMAIN/wp-config.php
 sed -i "s/username_here/$DBUSERNAME/1"
/var/www/$DOMAIN/wp-config.php
 sed -i "s/password_here/$DBPASSWORD/1"
/var/www/$DOMAIN/wp-config.php
}

execute () {
 lamp_install
 apache_virtual_host_setup
 ssl_config
 wordpress_config
}

165

Summary

The script does the following:

Install LAMP
Create a virtual host
Configure SSL
Install WordPress
Configure WordPress

With this being said, I hope you enjoyed this example. If you have any questions, please
feel free to ask me directly at @denctl.

https://twitter.com/denctl

166

Wrap Up

Congratulations! You have just completed the Bash basics guide!

If you found this useful, be sure to star the project on GitHub!

If you have any suggestions for improvements, make sure to contribute pull requests or
open issues.

In this introduction to Bash scripting book, we just covered the basics, but you still
have enough under your belt to start wringing some awesome scripts and automating
daily tasks!

As a next step try writing your own script and share it with the world! This is the best
way to learn any new programming or scripting language!

In case that this book enspired you to write some cool Bash scripts, make sure to tweet
about it and tag @bobbyiliev_ so that we could check it out!

Congrats again on completing this book!

https://github.com/bobbyiliev/introduction-to-bash-scripting
https://twitter.com

	Contents
	About the book
	About the author
	Sponsors
	Ebook PDF Generation Tool
	Ebook ePub Generation Tool
	Book Cover
	License

	Introduction to Bash scripting
	Bash Structure
	Bash Hello World
	Bash Variables
	Bash User Input
	Bash Comments
	Bash Arguments
	Bash Arrays
	Substring in Bash :: Slicing

	Bash Conditional Expressions
	File expressions
	String expressions
	Arithmetic operators
	Exit status operators

	Bash Conditionals
	If statement
	If Else statement
	Switch case statements
	Conclusion

	Bash Loops
	For loops
	While loops
	Until Loops
	Continue and Break

	Bash Functions
	Debugging, testing and shortcuts
	Creating custom bash commands
	Example
	Making the change persistent
	Listing all of the available aliases
	Conclusion

	Write your first Bash script
	Planning the script
	Writing the script
	Adding comments
	Adding your first variable
	Adding your first function
	Adding more functions challenge
	The sample script
	Conclusion

	Creating an interactive menu in Bash
	Planning the functionality
	Adding some colors

	Adding the menu
	Testing the script
	Conclusion

	Executing BASH scripts on Multiple Remote Servers
	Prerequisites
	The BASH Script
	Running the Script on all Servers
	Conclusion

	Work with JSON in BASH using jq
	Planning the script
	Installing jq
	Parsing JSON with jq
	Getting the first element with jq
	Getting a value only for specific key
	Using jq in a BASH script
	Conclusion

	Working with Cloudflare API with Bash
	Prerequisites
	Challenge - Script requirements
	Example script
	Conclusion

	BASH Script parser to Summarize Your NGINX and Apache Access Logs
	Script requirements
	Example script
	Running the script
	Understanding the output
	Conclusion

	Sending emails with Bash and SSMTP
	Prerequisites
	Installing SSMTP
	Configuring SSMTP
	Sending emails with SSMTP
	Sending A File with SSMTP (optional)
	Conclusion

	Password Generator Bash Script
	:warning: Security
	Script summary
	Prerequisites
	Generate a random password
	The script
	The full script:
	Conclusion
	Contributed by

	Redirection in Bash
	Difference between Pipes and Redirections
	Redirection in Bash
	STDIN (Standard Input)
	STDOUT (Standard Output)
	STDERR (Standard Error)

	Piping
	HereDocument
	HereString
	Summary

	Automatic Wordpress on LAMP installation with BASH
	Prerequisites
	Planning the functionality
	The script
	The full script
	Summary

	Wrap Up

